Behavioral measures and their correlation with IPM iteration counts on semi-definite programming problems
نویسندگان
چکیده
We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the (Renegar-) condition measure C(d) of the data instance, (iii) a measure of the near-absence of strict complementarity of the optimal solution, and (iv) the level of degeneracy of the optimal solution. We compute these measures for the SDPLIB suite problem instances and measure the correlation between these measures and IPM iteration counts (solved using the software SDPT3) when the measures have finite values. Our conclusions are roughly as follows: the aggregate geometry measure is highly correlated with IPM iterations (CORR = 0.896), and is a very good predictor of IPM iterations, particularly for problem instances with solutions of small norm and aspect ratio. The condition measure C(d) is also correlated with IPM iterations, but less so than the aggregate geometry measure (CORR = 0.630). The near-absence of strict complementarity is weakly correlated with IPM iterations (CORR = 0.423). The level of degeneracy of the optimal solution is essentially uncorrelated with IPM iterations. ∗MIT Sloan School of Management, 50 Memorial Drive, Cambridge, MA 02142, USA, email: [email protected] †Industrial and Systems Engineering, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, USA, email: [email protected] ‡Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore, email: [email protected]
منابع مشابه
A Primal-Dual Large-update Interior-point Algorithm for Semi-definite Optimization Based on a New Parametric Kernel Function
Based on a new parametric kernel function, this paper presents a primaldual large-update interior-point algorithm (IPM) for semi-definite optimization (SDO) problems. The new parametric function is neither self-regular function nor the usual logarithmic barrier function. It is strongly convex and possesses some novel analytic properties. We analyse this new parametric kernel function and show t...
متن کاملWaveform Design using Second Order Cone Programming in Radar Systems
Transmit waveform design is one of the most important problems in active sensing and communication systems. This problem, due to the complexity and non-convexity, has been always the main topic of many papers for the decades. However, still an optimal solution which guarantees a global minimum for this multi-variable optimization problem is not found. In this paper, we propose an attracting met...
متن کاملSolving A Fractional Program with Second Order Cone Constraint
We consider a fractional program with both linear and quadratic equation in numerator and denominator having second order cone (SOC) constraints. With a suitable change of variable, we transform the problem into a second order cone programming (SOCP) problem. For the quadratic fractional case, using a relaxation, the problem is reduced to a semi-definite optimization (SDO) program. The p...
متن کاملComputational Experience and the Explanatory Value of Condition Measures for Linear Optimization
The modern theory of condition measures for convex optimization problems was initially developed for convex problems in the following conic format: (CPd) : z∗ := minx{cx | Ax− b ∈ CY , x ∈ CX}, and several aspects of the theory have now been extended to handle non-conic formats as well. In this theory, the (Renegar-) condition measure C(d) for (CPd) has been shown to be connected to bounds on a...
متن کاملA New Infeasible Interior-Point Algorithm with Full Nesterov-Todd Step for Semi-Definite Optimization
We present a new full Nesterov and Todd step infeasible interior-point algorithm for semi-definite optimization. The algorithm decreases the duality gap and the feasibility residuals at the same rate. In the algorithm, we construct strictly feasible iterates for a sequence of perturbations of the given problem and its dual problem. Every main iteration of the algorithm consists of a feasibili...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 109 شماره
صفحات -
تاریخ انتشار 2007